Mechanical Engineering, B.S.M.E.
Program Educational Objectives:
The mechanical engineering program prepares graduates who will:
- Be successful as practicing professionals in diverse career paths or in graduate school.
- Distinguish themselves in breadth of perspective and the ability to solve complex problems.
- Be effective communicators and team members, with many assuming leadership roles.
- Be active in their profession and participate in continuing education opportunities to foster personal and organizational growth.
- Demonstrate a concern for justice, ethical behavior, and societal improvement through participation in professional and civic organizations.
Student Outcomes:
The Shiley School of Engineering prepares engineering majors with the following outcomes so that as graduates, they can attain the Program Educational Objectives listed above.
(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multidisciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
From tiny machined parts to large-scale mechanical systems, mechanical engineers find out what makes these things work, how they can work better, and what breaks them.
The program begins with mathematics and science topics in the first year, and engineering science courses in the sophomore year. Junior and senior year courses are devoted to analysis and design topics. ME electives and professional electives are available in various specialties for students to pursue their particular fields of interest. Throughout the four-year curriculum, emphasis is placed on teamwork and cooperation, good oral and written communication skills, and hands-on laboratory and project work to graduate well-rounded engineers from the program.
The mechanical engineering program leads to a bachelor of science in mechanical engineering (B.S.M.E.) degree accredited by the Engineering Accreditation Commission of ABET.
Degree Requirements
Common Engineering Requirements — 38 hours
EGR 110: For transfer students into the Shiley School who have declared a major and have not had an Introduction to Engineering course, the dean may approve the substitution of an engineering or computer science elective depending on the student’s educational background.
ME Majors: MTH 3XX or MTH 4XX can substitute for EGR 361.
Professional Electives - 9 hours
Professional electives: The professional electives may be a combination of courses (each 3-credits or more unless approved by the program chair) offered by the University at the 200-level or higher. Professional electives include the following: courses offered by the Shiley School, courses that comprise a University minor, and courses included in an approved cluster. Professional elective credit may not be awarded for AP and IB examinations, or ROTC credit. Must be taken for a grade A - F.
Mechanical Engineering Requirements — 53 hours
EE 261 | Electrical Circuits | 3 |
EE 271 | Electrical Circuits Laboratory | 1 |
EGR 211 | Engineering Mechanics-Statics | 3 |
EGR 212 | Engineering Mechanics-Dynamics | 3 |
EGR 221 | Materials Science | 3 |
EGR 270 | Materials Laboratory | 1 |
EGR 311 | Mechanics of Fluids I | 3 |
EGR 322 | Strength of Materials | 3 |
ME 222 | Engineering Graphics | 2 |
ME 301 | Mechanical Engineering Analysis | 2 |
ME 304 | Finite Element Analysis | 3 |
ME 312 | Mechanics of Fluids II | 2 |
ME 328 | Machine Design | 4 |
ME 331 | Fundamental Thermodynamics | 3 |
ME 332 | Applied Thermodynamics | 2 |
ME 336 | Heat Transfer | 3 |
ME 351 | Mechanical Systems Laboratory | 2 |
ME 374 | Fluids Laboratory | 1 |
ME 376 | Thermal Systems Laboratory | 1 |
ME 483 | Mechanical Engineering Capstone Project I | 2 |
| Or | |
EGR 483 | Multi-disciplinary Capstone Project I | 2 |
ME 484 | Mechanical Engineering Capstone Project II | 3 |
| Or | |
EGR 484 | Multi-disciplinary Capstone Project II | 3 |
| Math/Science Elective (3 semester hours) | 3 |
Math/Science Elective: Chosen from: BIO 200 or higher, CHM 200 or higher, PHY 300 or higher, or MTH 300 or higher. Does not include: BIO 384, BIO 387, CHM 387, MTH 387, and other specific math/science courses required for the degree. Must be taken for a grade A - F.
Dual degrees within engineering: Students completing dual degrees within the Shiley School have two options for completing the XX 483/484 requirement: 1) The student takes EGR 483 and EGR 484 and the student’s contributions to the capstone project include both disciplines, or 2) The student takes both discipline-specific 483 and 484 courses.
Credit minima: 34 semester credit hours of math and science; 57 semester credit hours of engineering
Correction to BSME requirements for 2012-2013 Bulletins: BSME requires 9 credits of technical electives, not the 12 as originally listed. For these Bulletin years, credit requirements are: 65 credits of ME requirements, 34 credits of Common Engineering requirements, and 30 credits of Core and College requirements for a total of 129 hours.
Correction to BSME requirements for 2013-2014 and 2014-2015 Bulletins: Professional electives and the Math/Science elective must be taken for a grade A - F.